Tuesday, 17 October 2017

Moving Average Gaussian Filter


Gaussian Smoothing Nomes comuns: Suavização gaussiana Breve Descrição O operador de suavização gaussiano é um operador de convolução em 2-D que é usado para desfocar imagens e remover detalhes e ruídos. Neste sentido, é semelhante ao filtro médio. Mas usa um kernel diferente que representa a forma de uma corcova gaussiana (em forma de sino). Este kernel tem algumas propriedades especiais que são detalhadas abaixo. Como Funciona A distribuição gaussiana em 1-D tem a forma: onde é o desvio padrão da distribuição. Também assumimos que a distribuição tem uma média de zero (isto é, está centrada na linha x 0). A distribuição é ilustrada na Figura 1. Figura 1 Distribuição gaussiana 1-D com média 0 e 1 Em 2-D, um gaussiano isotrópico (isto é, circularmente simétrico) tem a forma: Esta distribuição é mostrada na Figura 2. Figura 2 2-D Distribuição gaussiana com média (0,0) e 1 A idéia de suavização gaussiana é usar esta distribuição 2-D como uma função de propagação de pontos, e isso é conseguido por convolução. Como a imagem é armazenada como uma coleção de pixels discretos, precisamos produzir uma aproximação discreta à função Gaussiana antes que possamos realizar a convolução. Em teoria, a distribuição gaussiana não é zero em todos os lugares, o que exigiria um núcleo de convolução infinitamente grande, mas na prática é efetivamente zero mais do que cerca de três desvios padrão da média, e assim podemos truncar o kernel neste ponto. A Figura 3 mostra um núcleo de convolução de valor inteiro adequado que se aproxima de um Gaussiano com a de 1,0. Não é óbvio como escolher os valores da máscara para aproximar um Gaussiano. Pode-se usar o valor do Gaussiano no centro de um pixel na máscara, mas isso não é preciso porque o valor do Gaussiano varia de forma não linear ao longo do pixel. Nós integramos o valor do Gaussiano em todo o pixel (somando o Gaussiano em incrementos de 0,001). As integrais não são inteiros: nós redimensionamos a matriz de modo que os cantos tivessem o valor 1. Finalmente, o 273 é a soma de todos os valores na máscara. Figura 3 Aproximação discreta à função gaussiana com 1,0 Uma vez que um kernel adequado foi calculado, então o alisamento gaussiano pode ser realizado usando métodos convencionais de convolução. A convolução pode, de facto, ser executada rapidamente, uma vez que a equação para o 2-D isotrópico gaussiano mostrado acima é separável em componentes xey. Assim, a convolução 2-D pode ser realizada pela primeira convolução com um Gaussiano 1-D na direção x, e então convolução com outro Gaussiano 1-D na direção y. (O Gaussiano é de fato o único operador completamente circularmente simétrico que pode ser decomposto dessa forma.) A Figura 4 mostra o kernel componente 1-D que seria usado para produzir o núcleo completo mostrado na Figura 3 (após a escala por 273 , Arredondando e truncando uma linha de pixels ao redor do limite porque eles têm o valor 0. Isso reduz a matriz 7x7 para o 5x5 mostrado acima.). O componente y é exatamente o mesmo, mas é orientado verticalmente. Figura 4 Um do par de grãos de convolução 1-D usado para calcular o núcleo completo mostrado na Figura 3 mais rapidamente. Uma outra maneira de calcular uma suavização gaussiana com um grande desvio padrão é convolver uma imagem várias vezes com um Gaussiano menor. Embora este seja computacionalmente complexo, ele pode ter aplicabilidade se o processamento é realizado usando um pipeline de hardware. O filtro Gaussiano não só tem utilidade em aplicações de engenharia. Também está atraindo a atenção de biólogos computacionais porque foi atribuído com alguma quantidade de plausibilidade biológica, e. Algumas células nos caminhos visuais do cérebro muitas vezes têm uma resposta aproximadamente gaussiana. Diretrizes de Uso O efeito da suavização gaussiana é desfocar uma imagem, de forma semelhante ao filtro médio. O grau de suavização é determinado pelo desvio padrão do Gaussiano. (Desvio padrão maior Gaussianos, obviamente, requerem núcleos de convolução maiores para serem representados com precisão.) O gaussiano produz uma média ponderada de cada vizinhança de pixels, com a média ponderada mais para o valor dos pixels centrais. Isto está em contraste com a média dos filtros média uniformemente ponderada. Devido a isso, um Gaussiano proporciona alisamento mais suave e preserva bordas melhor do que um filtro médio de tamanho semelhante. Uma das principais justificativas para usar o Gaussiano como um filtro de suavização é devido à sua resposta de freqüência. A maioria dos filtros de suavização à base de convolução atuam como filtros de freqüência de passagem baixa. Isso significa que seu efeito é remover componentes de alta freqüência espacial de uma imagem. A resposta em frequência de um filtro de convolução, isto é, o seu efeito em diferentes frequências espaciais, pode ser observada tomando a transformada de Fourier do filtro. A Figura 5 mostra as respostas de freqüência de um filtro médio 1-D com largura 5 e também de um filtro gaussiano com 3 pixels. O eixo de frequência espacial é marcado em ciclos por pixel e, portanto, nenhum valor acima de 0,5 tem um significado real. Ambos os filtros atenuam freqüências altas mais do que baixas freqüências, mas o filtro médio exibe oscilações em sua resposta de freqüência. O gaussiano, por outro lado, não mostra oscilações. De fato, a forma da curva de resposta em frequência é ela própria (metade a) gaussiana. Assim, escolhendo um filtro gaussiano de tamanho adequado, podemos estar bastante confiantes sobre qual faixa de freqüências espaciais ainda estão presentes na imagem após a filtragem, o que não é o caso do filtro médio. Isso tem conseqüências para algumas técnicas de detecção de bordas, como mencionado na seção sobre passagens por zero. (O filtro gaussiano também se revela muito semelhante ao filtro de suavização ideal para a detecção de bordas segundo os critérios utilizados para derivar o detector de borda Canny) para ilustrar o efeito da suavização com filtros Gaussianos maiores e maiores sucessivamente. Mostra o efeito da filtragem com um Gaussiano de 1,0 (e tamanho do kernel 52155). Mostra o efeito da filtragem com um Gaussiano de 2,0 (e tamanho do kernel 92159). Mostra o efeito da filtragem com um Gaussiano de 4,0 (e tamanho do kernel 1521515). Consideramos agora a utilização do filtro gaussiano para a redução do ruído. Por exemplo, considere a imagem que foi corrompida por ruído gaussiano com uma média de zero e 8. Suavizando isto com um rendimento de 52155 Gaussiano (Compare este resultado com o obtido pelos filtros médio e mediano.) O ruído de sal e pimenta é mais desafiador Para um filtro Gaussiano. Aqui vamos suavizar a imagem que foi corrompida por 1 ruído de sal e pimenta (isto é, bits individuais foram invertidos com probabilidade 1). A imagem mostra o resultado da suavização gaussiana (usando a mesma convolução acima). Compare isso com o original Observe que muito do ruído ainda existe e que, embora tenha diminuído de magnitude um pouco, ele foi manchado em uma região espacial maior. Aumentar o desvio padrão continua a reduzir / desfocar a intensidade do ruído, mas também atenua significativamente o detalhe de alta freqüência (por exemplo, as arestas), como mostrado na Experimentação Interativa Você pode interativamente experimentar com esse operador clicando aqui. A partir do ruído gaussiano (média 0, 13), a imagem corrompida calcula tanto o filtro médio quanto o filtro Gaussiano, em várias escalas, e compara cada um em termos de remoção de ruído versus perda de detalhe. Em quantos desvios-padrão da média, um Gaussiano cai para 5 de seu valor máximo. Com base nisso, sugerimos um tamanho de grão quadrado adequado para um filtro Gaussiano com s. Estimar a resposta de freqüência para um filtro gaussiano por suavização gaussiana de uma imagem e tomar sua transformada de Fourier antes e depois. Compare isso com a resposta de freqüência de um filtro médio. Como o tempo gasto para alisar com um filtro gaussiano se compara com o tempo gasto para alisar com um filtro médio para um kernel do mesmo tamanho Observe que, em ambos os casos, a convolução pode ser acelerada consideravelmente explorando certas características do kernel. Referências E. Davies Visão da Máquina: Teoria, Algoritmos e Práticas. Academic Press, 1990, pp 42 - 44. R. Gonzalez e R. Woods Processamento de Imagens Digitais. Addison-Wesley Publishing Company, 1992, pág. 191. R. Haralick e L. Shapiro Computer and Robot Vision. Addison-Wesley Publishing Company, 1992, vol. 1, Cap. 7. B. Visão do robô Horn. MIT Press, 1986, Cap. 8. Visão da máquina de D. Vernon. Prentice-Hall, 1991, pp 59-61, 214. Informações locais Informações específicas sobre este operador podem ser encontradas aqui. O conselho mais geral sobre a instalação local do HIPR está disponível na seção introdutória de Informações Locais. O Guia de Cientistas e Engenheiros para o Processamento de Sinal Digital Por Steven W. Smith, Ph. D. Filtros de Filtros Móveis Filtros do Filtro de Média Móvel Em um mundo perfeito, os designers de filtros só teriam que lidar com informações de domínio de tempo ou de domínio de freqüência codificadas, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, os sinais de televisão caem nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com a sua composição de frequência, tal como a sua largura de banda total, como as ondas portadoras para a cor do amplificador de som são adicionadas, a restauração do amplificador de eliminação da componente de corrente contínua, etc. É melhor compreendida no domínio da frequência, mesmo se a informação de sinais é codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz a partir de uma fonte de alimentação comutada, ou 1320 kHz de uma estação de rádio AM local. Os parentes do filtro de média móvel têm um melhor desempenho no domínio da frequência, e podem ser úteis nestas aplicações de domínio misto. Os filtros de média móvel de passagem múltipla envolvem passar o sinal de entrada através de um filtro de média móvel duas ou mais vezes. A Figura 15-3a mostra o núcleo de filtro global resultante de uma, duas e quatro passagens. Duas passagens são equivalentes à utilização de um kernel de filtro triangular (um núcleo de filtro retangular convolveu-se consigo mesmo). Depois de quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Como mostrado em (b), passagens múltiplas produzem uma resposta de passo em forma de s, em comparação com a linha reta da passagem simples. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si para cada passagem. Isto é, cada vez que a convolução do domínio resulta numa multiplicação dos espectros de frequência. A Figura 15-4 mostra a resposta em frequência de dois outros familiares do filtro de média móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência é também um Gaussiano, como discutido no Capítulo 11. O Gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e artificiais. Por exemplo, um breve pulso de luz que entra numa longa linha de transmissão de fibra óptica irá sair como um pulso Gaussiano, devido aos diferentes caminhos tomados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem a rápida convolução bidimensional (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde a usar uma janela de Blackman como um kernel de filtro. (A janela do termo não tem nenhum significado aqui é simplesmente parte do nome aceitado desta curva). A forma exata da janela de Blackman é dada no Capítulo 16 (Equação 16-2, Fig. 16-2) no entanto, se parece muito com um Gaussiano. Como são esses parentes do filtro de média móvel melhor do que o filtro de média móvel em si Três maneiras: Primeiro, e mais importante, esses filtros têm melhor atenuação de banda de interrupção do que o filtro de média móvel. Em segundo lugar, os grãos de filtro diminuem para uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas de passo são curvas suaves, ao invés da linha recta abrupta da média móvel. Estes dois últimos são geralmente de benefício limitado, embora você possa encontrar aplicações onde eles são verdadeiras vantagens. O filtro de média móvel e seus parentes são todos aproximadamente o mesmo na redução de ruído aleatório, mantendo uma resposta passo agudo. A ambiguidade reside na forma como o tempo de subida da resposta ao passo é medido. Se o tempo de subida é medido de 0 a 100 do passo, o filtro de média móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 para 90 torna a janela de Blackman melhor do que o filtro de média móvel. O ponto é, isto é apenas disputas teóricas considerar esses filtros iguais neste parâmetro. A maior diferença entre esses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito a seguir), o filtro de média móvel será executado como relâmpagos em seu computador. Na verdade, é o mais rápido filtro digital disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda assim muito rápidas. Em comparação, os filtros Gaussiano e Blackman são extremamente lentos, porque eles devem usar convolução. Pense um fator de dez vezes o número de pontos no kernel do filtro (com base na multiplicação sendo cerca de 10 vezes mais lento que a adição). Por exemplo, espere um Gaussiano de 100 pontos ser 1000 vezes mais lento do que uma média móvel usando recursão. Filtro Médio de Movimentação (Filtro MA) Carregando. O filtro de média móvel é um simples filtro Low Pass FIR (Finite Impulse Response) comumente usado para suavizar uma matriz de dados / sinal amostrados. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a suavidade da saída aumenta, enquanto que as transições nítidas nos dados são feitas cada vez mais sem corte. Isto implica que este filtro tem excelente resposta no domínio do tempo, mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido à computação / cálculos envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com fraca resposta de domínio de freqüência e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A figura a seguir é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não tem feito muito na filtragem do ruído. Aumentamos os toques do filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é mostrado na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente ditas (observe a inclinação em ambos os lados do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação de banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em mau desempenho no domínio da freqüência, e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Barra lateral principal

No comments:

Post a Comment